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Abstract. In this letter we present a technique to stabilize the inverted
pendulum mounted on a cart. The pendulum is brought to its top po-
sition with zero displacement of the cart by using a nested saturation
function. This can be done because the original system can be expressed
as a chain of integrator with an additional nonlinear perturbation. Under
the assumption that the pendulum angle is initialized above the upper-
half plane, the obtained closed-loop system is semi-global asymptotically
and locally exponentially stable.

1 Introduction

The stabilization of the inverted pendulum on a cart (IPC) is a very interest-
ing problems. This device consists of a free vertical rotating pendulum with a
pivot point mounted on a cart. The cart can be moved horizontally by means of
an horizontal force, which is the control of the system. Because the pendulum
angular acceleration can not be directly controlled, this system is a classic ex-
ample of an under-actuated mechanical system, that is, it has fewer actuators
than degrees-of-freedom. For this reason the majority of fully-actuated systems
control techniques cannot be directly applied to stabilize this kind of systems.
Maneuvers such as the stabilization around the unstable vertical position and
others related to the stabilization around its homoclinic orbits are almost impos-
sible to achieve (see[14],[9],[16]) because the IPC is not input-output linearizable
using a static feedback [7]. Also, when the pendulum moves through the horizon-
tal plane it looses controllability and other geometric properties [9]. On the other
hand, a linearized model of the IPC is is locally controllable around the unsta-
ble equilibrium point and can be locally stabilized by a direct pole placement
procedure [15].

There are two important problems related to the stabilization of this device.
The first is swinging the pendulum up from the hanging position to the upright
vertical position. An energy control strategy is usually applied for this purpose.
Once the system is close to the desired top position with low enough speed
(the inverted pendulum remains swinging while getting closer and closer to the
origin), and suddenly, by means of a simple change in the controller, from the
non-linear to the linear controller, it is possible to keep the pendulum in the
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desired equilibrium [3],[6],[9],[16],[14]. The second problem in importance con-
sists in stabilization of the IPC around its unstable equilibrium point (which
is defined when the angle position and the displacement of the cart are zero),
assuming that the pendulum is initially above the horizontal plane, or lies inside
an open vicinity of zero. In general, this vicinity defines a stability domain for
the closed-loop system. Exist many works related with the second problem but
a detailed review of the state of the art of the problem here treated is beyond
the scope of this work. However, we refer the interested reader to the following
references: [11],[19],[1],[2],[13],[12], [5].

In this paper we develop a simple strategy for the stabilization to the IPC.
We transform the original system into a four-order integrator chain plus an addi-
tional nonlinear perturbation based in the procedure presented in [13]. Then, by
applying the simple Lyapunov method, a controller based on nested saturated
functions is introduced. Next, we show that the closed-loop solution is bounded,
which allows to prove that the system is locally exponentially stable. The sta-
bility analysis of the whole four order system is fairly simple, as opposite to
[13],[10], because, we neither use a fixed-point equation, nor a highly complex
domain of attraction estimation. Also, we do not use the contraction mapping
theorem to verify the convergence of all states to zero.

The remaining of this paper is organized as follows. Section 2 presents the
dynamical model of the IPC and how this system is converted into an integrators
chain, by means of some suitable transformations. In section 3 we present a
stabilizing nonlinear controller for the IPC. The corresponding stability and
convergence analysis is carried out in the same section. Section 4 presents some
computer simulations and the conclusions are given in section 5.

2 Nonlinear Model

Consider the traditional IPC, as shown in Figure 1. This system is described by
the set of normalized differential equations [12]:

cos θẍ + θ̈ − sin θ = 0,

(1 + δ)ẍ + cos θθ̈ − θ̇2 sin θ = u,
(1)

where x is the normalized displacement of the cart, θ is the angle that the
pendulum forms with the vertical, u is the horizontal normalized force applied
to the cart, and δ > 0 is a constant depending directly on the cart mass and the
pendulum mass, respectively. Defining v = θ̈ and canceling ẍ from the last two
differential equations, we have after substituting:

u = (1 + δ) tan θ1 − θ2
2 sin θ1 + v(cos θ1 − 1 + δ

cos θ1
),

into system (1) the following
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Fig. 1. The inverted pendulum cart system

ẋ1 = x2,
ẋ2 = tan θ1 − v

cos θ1
,

θ̇1 = θ2,

θ̇2 = v.

(2)

Where v is a fictitious controller acting in the coordinate θ1. Of course, the above
representation is validated for all θ1 ∈ (−π/2, π/2). Hereafter, we refer to this
restriction as assumption A1 and system (2) as a partial linearized model of the
IPC.

The main objective is to control the partial linearized system (2) under assump-
tion A1. In other words we want to bring, both, the pendulum angle position
and the cart displacement to zero.

2.1 Transforming the partial linear model into a chain of
integrators:

From [13] we introduce

z1 = g(θ1) + x1 z2 = g′(θ1)θ2 + x2 (3)

where the function g is selected such that the derivative of the variable z2 does
not depend directly on the control v, that is,

ż2 = tan θ1 + v(g′(θ1) − 1
cos θ1

) + θ2
2g

′′(θ1). (4)

Consequently,

g′(θ1) =
1

cos θ1
; g(θ1) = log

(
1 + tan(θ1/2)
1 − tan(θ1/2)

)
, (5)

these relations are well defined for |θ1| < π/2.
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Now, from (3) and (5), we can write system (2), as follows,

ż1 = z2,

ż2 = tan(θ1)(1 + θ2
2

cos θ1
),

θ̇1 = θ2,

θ̇2 = v.

(6)

In order to express the above system as an integrators chain plus a nonlinear
perturbation, the following global nonlinear transformations is introduced

w1 = tan θ1, w2 = sec2 θ1θ2,
vf = sec2 θ1v + 2θ2

2 tan θ1 sec2 θ1
(7)

which leads to

ż1 = z2,

ż2 = w1 + w1w2
2

(1+w2
1)3/2 ,

ẇ1 = w2,
ẇ2 = vf .

(8)

2.2 Comment

A similar representation of model (8) was proposed in [10]. There, the control and
the non-actuated coordinate are not completely uncoupled.That is the control
acts directly on the additional nonlinear perturbation, and as consequence, the
resulting closed-loop system has a more restrictive domain of attraction. In our
case, the control action is completely uncoupled, so that, it is possible to increase
the stability domain for all the initial conditions that belongs in the upper half
plane.

3 Control strategy

A nested saturation function is suggested to use to control a nonlinear system
that can be expressed, approximately, as a chain of integrators with a nonlinear
perturbation. This technique, introduced in [18], has been used for the stabi-
lization of a linear integrators chain and controlling mini-flying machines [20].
Thus, our stability problem will be solved as follows. First, a linear transforma-
tion is used to directly propose a stabilizing controller; then, it is shown that the
proposed controller guarantees the boundedness of all states and, after a finite
time, it is possible to ensure that all states converge to zero.
Definition: σm(s) : R → R is a linear saturation function, if it satisfies

σm(s) =
{

s if |s| ≤ m
m sign(s) if |s| > m

. (9)
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3.1 A feedback controller

Let us introduce the following linear transformations:
⎡
⎢⎢⎣

q1

q2

q3

q4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 3 3 1
0 1 2 1
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z1

z2

w1

w2

⎤
⎥⎥⎦ , (10)

then system (8) is transformed as,

q̇1 = vf + q2 + q3 + q4 + 3δa(q)
q̇2 = vf + q3 + q4 + δa(q)
q̇3 = vf + q4

q̇4 = vf

(11)

where the perturbation δa is given by

δa(q) = q2
4G(q3 − q4), (12)

and
G(w) =

w

(1 + w2)3/2
, (13)

for simplicity, we stand for q = [q1, q2, q3, q4].
Remark 1: Note that max |G(w)| ≤ k0 = 2

33/2 , and it is achieved when w =
1/
√

2.

Finally, a stabilizing controller may be readily proposed as:

vf = −q4 − kσα(
q3 + σβ(q2 + σγ(q1))

k
). (14)

where k is positive constant.

3.2 Boundedness of all states

We show in four steps that the proposed controller (14) ensures that all the
states are bounded; moreover, the bound of each state depends directly on the
controller parameters.1

First step. Define the positive definite function V4 = q2
4/2. Then the time

derivative of V4 is given by,

V̇4 = −q2
4 − kq4σα(q3/k + σβ(q2 + σγ(q1))/k). (15)

1 Note that |q4(t)| ≤ q4(0)e−t + α and |G(q3 − q4)| ≤ k0. Therefore, the right hand of
the closed loop system (14) and (11) is locally Lipschitz. Consequently, the states
{q1, q2, q3} cannot have a finite time scape [8].
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It is clear that V̇4 < 0, when |q4| ≥ αk. Consequently, there is a finite time
T1 > 0 such that

|q4(t)| < αk ∀t > T1. (16)

Second step. Let us analyze the behavior of the state q3. Consider the definite
positive function V3 = q2

3/2. Differentiating V3, we obtain after substituting
(14) into the third differential equation of (11):

V̇3 = −q3kσα(q3/k + σβ(q2 + σγ(q1))/k), (17)

where α and β are selected such that α > 2β. Clearly, if q3 > β, then V̇3 < 0
and there is a finite time T2 > T1 after which

|q3(t)| < β forallt > T2. (18)

When the above condition is satisfied, the control vf turns out to be

vf = −q4 − q3 − σβ(q2 + σγ(q1)) ∀t > T2. (19)

Third step. Substituting (19) into the second equation of (11), we obtain

q̇2 = −σβ(q2 + σγ(q1)) + δa(q). (20)

Define a positive definite function V2 = q2
2/2. Differentiating V2 along of the

trajectories of (20) yields2

V̇2 = −q2 (σβ(q2 + σγ(q1)) + δa(q)) (21)

where β and γ must satisfy β > 2γ + k0α
2k2. Obviously, if |q2| > γ + k0α

2k2

then V̇2 < 0. Hence, there exist a finite time T3 > T2 after which

|q2| < γ + k0k
2α2, ∀t > T3. (22)

Consequently, q2 is bounded and the control vf becomes

vf = −q4 − q3 − q2 − σγ(q1), ∀t > T3. (23)

Fourth step. Substituting (23) into the first equation of (11), we obtain

q̇1 = −σγ(q1) − 3δa(q). (24)

Now, define a positive definite function V1 = q2
1/2. By differentiating V1 along

of the trajectories of (24), we obtain

V̇1 = −q1(σγ(q1) + 3δa(q)), (25)

where parameter γ must be chosen such that γ > 3k0α
2k2. If q1 > 3k0α

2k2,
then V̇1 < 0, thus there exits a finite time T4 > T3 afterwards

|q1| < 3k0α
2k2, ∀t > T4. (26)

2 Recalling that after t > T3, it has |δa(q)| ≤ k0α
2k2.
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Consequently q1 is also bounded. So, all the previous constraints on parameters
α, β and γ can be summarized as

α > 2β, β > 2γ + k0k
2α2, γ > 3k0k

2α2. (27)

Manipulating the last inequalities, we have that

α < 1/(14k0k
2). (28)

Thus, parameter k may be taken as 14k0k
2 = 1 and the set of control parameters

may be selected as
α = r, β = r/2, γ = 3r/14, (29)

for all 0 < r ≤ 1.

3.3 Convergence of all states to zero

We will prove that the closed-loop system given by (11) and (14) is asymp-
totically stable and locally exponentially stable, provided that the controller
parameter satisfies (27).

Note that after t > T4, the control law is no longer saturated, that is,

vf = −q1 − q2 − q3 − q4,

and the closed-loop system turns out to be, as

q̇1 = −q1 + 3δa(q),
q̇2 = −q1 − q2 + δa(q),
q̇3 = −q1 − q2 − q3,
q̇4 = −q1 − q2 − q3 − q4,

(30)

with δ defined in (12) . Let us define the following Lyapunov function

V =
1
2
qT q, (31)

Now, differentiating V along the trajectories of (30), we obtain

V̇ = −qT Mq + (3q1 + q2)δa(q) (32)

where

M =

⎡
⎢⎢⎣

1 1
2

1
2

12
1
2 1 1

2
1
2

1
2

1
2 1 1

2
1
2

1
2

1

2 1

⎤
⎥⎥⎦ . (33)

being M positive definite with λmin{M} = 1/2.
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From Remark 1 and ((12), we easily have that the second term of the right
hand of(32) satisfies

|(3q1 + q2)δ(q)| < k0
2

∣∣(3q1 + q2)q2
4

∣∣ ;
< k0

2 (q4
4 + (3q1 + q2)2).

(34)

So, V̇ fulfills

V̇ < −1
2

[
q2
1 + q2

2 − k0(3q1 + q2)2
] − q2

4

2
(1 − k0q

2
4) − 1

2
q2
3 . (35)

From definition of k0 and recalling that 14k0k
2 = 1, we obtain that the previous

inequality is strictly negative definite, since

q2
1 + q2

2 − k0(3q1 + q2)2 > 0, (36)

and
−1 + k0q

2
4 ≤ −1 + 4k0k

2 < 0. (37)

Therefore, V̇ is strictly negative definite, and the vector state q locally exponen-
tially converges to zero, after t > T4.

It should be noticed that, proceeding as described, we obtain that the system
(11) in closed-loop with the controller (14) is globally asymptotically stable and
locally exponentially stable, when the parameters satisfy the restriction (27).
However, we can only assure converge to zero of the original states (x, θ, ẋ, θ̇),
assuming that the initial angle of the pendulum belongs to the upper half plane,
because (2) and (7) are well defined for θ ∈ (−π/2, π/2). That is, assumption
A1 is necessary to avoid the singular points θ = ±π/2.
From the above discussion, we have:

Proposition 1. Consider the partial linearization model of the IPC as de-
scribed by (2), under assumption A1, in closed-loop with the controller:

v = −θ2 cos2 θ1 − kσα

(
q3+σβ(q2+σγ(q1)

k

)
cos2 θ1 − 2θ2

2 tan θ2
1, (38)

where k =
√

1/(14 × 23/2), q1, q2 and q3 are given by

q1 = z1 + 3z2 + 3w1 + w2; q2 = z2 + 2w1 + w2;
q3 = w1 + w2,

(39)

with
w1 = tan θ1; w2 = θ2 sec2 θ1;
z1 = log

(
1+tan(θ1/2)
1−tan(θ1/2)

)
+ x1; z2 = θ2/ cos θ1 + x2.

(40)

Then the closed-loop system is semi-globally stable and locally exponentially
stable provided that the control parameters α, β and γ satisfy the inequalities
(27).
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4 Numerical Simulations

The efficiency of the proposed control strategy was tested by computer simu-
lations. The experiments were implemented in Matlab program. The controller
parameter values were set as α = 0.99, β = 0.49 and γ = 0.214, and the initial
conditions were set as θ1(0) = 1.18 [rad], θ2(0) = −0.05 [rad/ sec], x1(0) = −0.6
and x2(0) = 0.5.
Figure 2 and Figure 3 show the closed loop responses to the proposed controller
(38), when it applied to the partial linearized model (2). As can be seen, the
state x1 converges very slowly to zero, in comparison with the state θ1. This
is because the cart position increases until the angle position of the pendulum
approaches to zero. This event is expected since, firstly, the controller brings
the pendulum into a small vicinity of zero, while, the cart position reaches its
maximum, and secondly, the controller forces to move the cart slowly to the
origin. Besides, it should be noticed that the control strategy was carried out
with slowly movements. Finally, figure 4 shows the behavior of the control input
v and the proposed energy function V , respectively. As can be seen, the control
input v goes to zero and the Lyapunov function is decreasing after t > 10 and
also converges to zero.

Fig. 2. Closed-loop response of the angle and the angular velocity to the proposed
controller

5 Conclusions

A nested saturation-based controller for the stabilization of the IPC is pre-
sented, under assumptions that the initial value of the pendulum angle lies in the
above horizontal plane. The fact that the IPC can be written (approximately)
as a four cascaded integrators. Permits to use a nested saturation functions to
design a stabilizing controller. The proposed controller makes the system be
stable (under some restriction on the control parameters), and after some finite
time assures that all states converge exponentially to zero. Physically, the control
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Fig. 3. Closed-loop response of the cart position and the cart velocity to the propose
controller

Fig. 4. Depict the behavior of the controller v and energy function V , respectively
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strategy consist in bringing the pendulum close to the upper position, and then
gradually the cart position is moving to the origin. The stability analysis is fairly
simple, because it is carried out using Lyapunov’s approach. Furthermore, some
computer simulations have been performed in order to test the effectiveness of
the proposed controller.
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